Homeschool Self-Guided Education Packet **TEACHER GUIDE** GRADES K - 1 STUDENT SHEETS INCLUDED #### **VISIT GUIDE: GRADE K-1** ## Welcome to LEGO® Discovery Center ### **LEGO® Discovery Center** connects learning and fun together like LEGO® bricks! Our self-guided homeschool visits allow students to **explore**, **discover**, **and create** in an engaging environment filled with hands-on activities. The guide is designed to add fun, focused, and interactive learning during your visit. This guide includes **curriculum-based challenges and activities** covering Mathematics, English, History, and Science for 3 attractions! Including: #### **MINILAND** Marvel at LEGO landmarks and build your own MINILAND ### **LEGO® Kingdom Quest** Go on a science adventure! #### **LEGO® Racers Build & Test** Design and test your way to the finish line! ## **LEGO® MINILAND** MINILAND is a miniature replica featuring the city's most loved buildings and landmarks. Fun Facts: All of the MINILAND models took a total of 5000 hours to design and build. MINILAND is made up of over 1.5 Million LEGO® Bricks. There are over 500 Minifigures! ## Challenge #### Students are challenged to explore MINILAND and do the following: - Observe and describe landmarks. - · Classify natural vs. human-made features. - Represent ideas through drawings/models. - Begin connecting landmarks to people and communities. - Share ideas through speaking/drawing. ## **Preparing for the Activity** #### **Questions and Definitions:** - Q: What is a landmark? - A: An object or feature of a landscape or town that is easily seen and recognized from a distance, especially one that enables someone to establish their location. - Q: What is a natural landmark? - A: a physical feature in the landscape, such as a mountain, waterfall, cave, or a body of water, that is easily recognized and stands out from its surroundings, not created or significantly altered by humans - Q: What is a Human-Made landmark? - A: a notable, impressive, or unique structure or feature built by people, rather than by nature. These landmarks can be ancient ruins, modern architectural feats, or other structures that stand out in a landscape, serving to identify an area, a city, or a nation. ## **LEGO® MINILAND** MINILAND is a miniature replica featuring the city's most loved buildings and landmarks. Fun Facts: All of the MINILAND models took a total of 5000 hours to design and build. MINILAND is made up of over 1.5 Million LEGO® Bricks. There are over 500 Minifigures! ## **Learning Objectives** This MINILAND activity supports early science, engineering, and social studies learning goals for Kindergarten and Grade 1 by helping students: - Observe and describe landmarks and features in their environment. - Classify natural vs. human-made features. - Represent ideas through drawings and simple models. - Connect landmarks to communities and culture. - · Communicate their ideas through speaking and drawing. The activity reinforces foundational observation, classification, modeling, and communication skills, while also building early community and geography awareness. ## **Georgia Standards Addressed** Georgia (GSE - Kindergarten & 1st Grade Science & Social Studies) - **Science:** Observing properties of earth materials (SKP1), classifying natural/human-made features. - Social Studies (SSKG2, SS1G3): Identifying community landmarks and explaining their importance. - Science & Engineering Practices: Drawing models and sharing observations. Activity: Page 2 of 2 ## STUDENT WORKSHEET LEGO® MINILAND ## MINILAND: Landmark Activity ### Part 1 - Landmark Scavenger Hunt Look around MINILAND. Can you find these? Circle them when you do! Sports game Sculpture Ride or attraction Fountain Train Tall building Lake #### Part 2 - Natural or Human-Made? Draw a line to match each landmark. | □ A sports game | □ NATURAL | |-----------------|--------------| | □ An airport | □ HUMAN-MADE | | □ A fountain | □ NATURAL | | □ A lake | □ HUMAN-MADE | | □ A sports game | □ NATURAL | | □ An airport | □ HUMAN-MADE | | □ A fountain | □ NATURAL | | □ A lake | □ HUMAN-MADE | | | | | | | ## STUDENT WORKSHEET LEGO® MINILAND ## MINILAND: Landmark Activity ### Part 3 - My Dream MINILAND Draw 4 landmarks you would put in your MINILAND. Then head over to any build zone and recreate your scene using LEGO® bricks. ## STUDENT WORKSHEET LEGO® MINILAND ## **MINILAND:** Landmark Activity #### Part 4 - Share Your Ideas! #### Finish the sentences: | • | My favorite landmark is | |---|--------------------------------| | | | | • | I like it because | | • | People visit landmarks because | | | | #### Part 5 - "I Can" Statements #### Kindergarten - I can find and name special places in a city. - I can tell if something is natural (like a lake) or human-made (like a building). - I can draw my own model of a city with landmarks. - I can talk about why people like to visit these places. #### Grade 1 - I can observe and describe what landmarks look like. - I can sort landmarks into groups (natural or human-made). - I can create a drawing of my dream MINILAND. - I can explain why I chose certain landmarks. ## **LEGO® Kingdom Quest** Kingdom Quest is a ride in which riders board carriages and are transported through a series of interactive screens. Each person in the carriage is provided wit a "blunderbuss" and compete to save the princess and get the highest score! ## **Learning Objectives** - Observation & Data Collection: Students track and compare scores across multiple trials. - Data Representation: Using tables, grids, and visuals builds early math and data-literacy skills. - Cause & Effect Reasoning: Changing seat position introduces simple variables and fair testing. - Communication & Reflection: Explaining results and fairness builds argument-from-evidence skills. ## Georgia Curriculum Standards Addressed - Science (SKP1, S1P1): Observe motion and describe changes caused by actions. - Math (MGSEK.MD, MGSE1.MD): Classify and organize data into categories and represent them graphically. - Students engage in scientific communication when they share results and reflect on fairness. ## Challenge Students are instructed via voiceovers to zap the bad guys with the blunderbuss – this is done by pointing and shooting. A score appears on a screen in front of each students which tallies their success in zapping the bad guys. To gather the appropriate amount of data, enjoy the ride up to 4 times! Adults are encouraged to ride also; this way students have more data to utilize. - Ride 1: Choose any seat and sit on the right side. - Ride 2: Choose the same seat but sit on the left side. - Ride 3: Choose a seat in a different row, sit on the right side. - Rode 4: Choose the same row but sit on the left side. At the conclusion of each ride, students must remember their score. Students can also ask other riders what their scores were. After exiting the ride each time, students must write down their score and those of others. ## **Post Challenge** Students are encouraged to think about the different ways they can represent this data and are to explore how the same data can be represented in different ways. They are challenged to represent the data in a grid form. They can also reflect on whether Kingdom Quest was fair. Activity: Page 1 of 1 ## STUDENT WORKSHEETS LEGO® Kingdom Quest ## Kindergarten & 1st Grade Science Adventure! Today, you get to be a scientist! Ride, zap the bad guys, record your score, and look for patterns. ## Part 1 - My Ride Data | Ride # | Seat | Side | My Score | Friend's Score | |--------|-----------|-------|----------|----------------| | 1 | Same Seat | Right | | | | 2 | Same Seat | Left | | | | 3 | New Row | Right | | | | 4 | Same Row | Left | | | #### Part 2 - Show Your Data Draw tally marks, blasters, or color bars to show your scores! | Ride 1 | | |--------|--| | Ride 2 | | | Ride 3 | | | Ride 4 | | ## STUDENT WORKSHEETS LEGO® Kingdom Quest ## Kindergarten & 1st Grade Science Adventure! #### Part 3 - Patterns & Fairness | 1. | What did you notice? Which ride gave you the biggest score? Which ride gave you the smallest score? | |----|---| | 2. | Did you see a pattern? Did right side or left side do better? Did front row or back row do better? | | 3. | Fair or Not Fair? Do you think the game was fair for everyone? Why or why not? | | | | ### Part 4 - NGSS Reflections Today, you were a scientist! - You asked questions. - You collected data. - > You looked for patterns. - > You shared your ideas. Scientists use data to explain the world. You used your scores to explain what happened on the ride! ## **LEGO® Build & Test** In the Build and Test area, students will find brick pits featuring car pieces including wheels, body pieces, and axels. They can then use two different ramps to test the durability and speed of their cars. ## **Georgia Curriculum Standards Addressed** This activity aligns strongly with GSE curriculum standards by supporting: - Forces & Motion Exploration: Students directly observe how pushes, pulls, and ramp height affect speed and distance. - Data Collection & Representation: Recording results in simple categories, charts, or tables builds foundational math/data skills. - Prediction & Reflection: Encourages early scientific thinking through making predictions, testing, and refining designs. - Engineering Practices: Introduces the design cycle (plan → build → test → improve) in an age-appropriate, hands-on format. - Science (SKP1, S1P1): Investigate pushes and pulls and how they change motion. - Math (MGSEK.MD & MGSE1.MD): Classify, compare, and represent simple data. - · Engineering Practices: Predict outcomes, test, and suggest improvements to designs. ## Challenge In this workshop, students will design and build their own Lego race cars, then test them on a ramp to see how far and fast they travel. Before testing, students will make predictions about how their car will perform. During the races, they will observe results, collect simple data (fast, medium, slow; distance; or winner), and record their findings on a worksheet. ## **Post Challenge** Afterward, students will reflect on what worked, what could be improved, and sketch an updated design. Activity: Page 1 of 1 # STUDENT WORKSHEET LEGO® Build & Test ## Race Car Challenge: Build. Test, Improve! #### Part 1 - Build Your Car - Use LEGO® bricks, wheels, and axles to make a race car. - Make sure your wheels can roll easily. - Your car should be strong enough to go down the ramp without falling apart. *Think:* What size wheels will you use? Will your car be long, short, heavy or light? #### Part 2 - Make a Prediction Check your prediction before testing. - ☐ My car will go fast - My car will go medium - □ My car will go **slow** - □ My car will **go far** - My car will not go very far #### Part 3 - Test Your Car - Place your car at the top of the ramp. - Let it go no pushing! - Watch carefully. - Test your car 2 more times. - Record what happens on the next worksheet. # STUDENT WORKSHEET LEGO® Build & Test ## Race Car Challenge: Build. Test, Improve! #### Part 4 - Race Results Record results below. Put an "X" under the speed your car traveled and explain what happened differently during each test. | Test | Fast | Medium | Slow | Winner
(if racing) | Notes (distance, straight, wobbly?) | |------|------|--------|------|-----------------------|--| | #1 | | | | | | | #2 | | | | | | | #3 | | | | | | ### Part 5 - Improve Your Car Question: What could make your car better? Make changes and test again! - Big wheels - Small wheels - □ Long body - □ Short body - Low body - □ Tall body - □ Wide body - □ Thin body - Dark colored bricks - Light colored bricks - Windshield - □ No windshield - □ Heavy car - Light car ## STUDENT WORKSHEET LEGO® Build & Test ## **Car Building & Racing Investigation** | P | Part 6 - Reflection | | | | | | |---|---------------------|-----------------------|-----------------------|----------------|--|--| | С | ircle One: | | | | | | | • | My car went: | Faster than I thought | Slower than I thought | About the same | | | | A | nswer the Que | stions: | | | | | | • | What helped y | our car go fast? | | | | | | • | What would y | ou change next time? | | | | | | D | raw your impro | oved car idea: |